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Abstract. A thermodynamically consistent lattice Boltzmann scheme for simulating the flow of a binary
fluid is extended to allow the fluid components to have different viscosities. The approach is tested for the
shear and Poiseuille flow of layered immiscible fluids and for the dispersion relation and the damping of a
capillary wave. We then consider the fingering that results when a fluid is displaced by a less viscous fluid
in a two-dimensional channel. The finger widths obtained match the results of Reinelt and Saffman [1],
but differ somewhat from those of Halpern and Gaver [2] for capillary numbers above 2. A limiting finger
width close to 1/2 is obtained for high capillary numbers and high viscosity ratios.

PACS. 47.11.+j Computational methods in fluid dynamics – 83.10.Lk Multiphase flows –
66.20.+d Viscosity of liquids; diffusive momentum transport

1 Introduction

The lattice Boltzmann method is an approach for solv-
ing the Navier-Stokes’ equations of fluid flow [3]. It can be
viewed either as a slightly unusual finite-difference scheme
or as a discretization of a simplified Boltzmann equation.
The latter interpretation allows the simulation variables to
be identified as one-particle distribution functions. These
move around the lattice via consecutive streaming and
collision steps. The collisions conserve mass and momen-
tum so the system obeys the continuum equations of fluid
dynamics at sufficiently long times.

The lattice Boltzmann scheme consists mainly of lo-
cal operations, and is ideal for parallel processing. Since
no-flow boundaries are easily implemented, the method is
especially suited to simulate flow in complex geometries,
as, for example, multiphase flow in a porous medium.

Gunstensen et al. [4] extended the lattice Boltz-
mann method so that two immiscible phases could be
simulated. By phenomenological collision and recoloring
rules, a sharp interface between the two phases was ob-
tained. Flekkøy [5] introduced a lattice Boltzmann scheme
capable of simulating both the Navier-Stokes and the
convection-diffusion equation in the one-phase region.
Orlandini et al. [6,7] presented a similar, thermo-
dynamically-consistent, model for two-phase systems.
Here the equilibrium state minimizes a chosen free en-
ergy and the corresponding pressure tensor and chemi-
cal potential coupling to the density difference appear in
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the Navier-Stokes and convection-diffusion equations re-
spectively. This permits the simulation of immiscible flow
problems. This method has been successfully applied to
various physical problems, such as spinodal decomposition
[8] and flow in porous media [9].

In this article we extend the binary fluid model pro-
posed by Orlandini et al., so the two components can
have different viscosities. Both Grunau et al. [10] and
Rakotomalala et al. [11,12] have used the lattice Boltz-
mann method to study two-viscosity problems. Grunau
et al. used a second order polynomial in ∆n/n (see below)
to connect the bulk phase viscosities in the Gunstensen
et al. model. Rakotomalala et al. extended Flekkøy’s
model, with the same “ideal” viscosity relation that is used
in this paper. The important difference to our approach is
that here the interfaces between the two phases are stable
and have a thermodynamically consistent profile.

The computational scheme is described in the next
section of the paper. The model, currently implemented
in two dimensions, is checked against the test cases of
the shear and Poiseuille flow of layered immiscible flu-
ids where analytic results are available for comparison.
These results are described in Sections 3.1 and 3.2 respec-
tively. For shear and Poiseuille flow geometries the inter-
face between the fluids is stationary in time. To evaluate
our method also for a moving interface problem with an-
alytical predictions the dispersion and damping of a cap-
illary wave is calculated in Section 3.3. Finally, in Sec-
tion 3.4, the model is used to investigate the evolution
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of the finger that form when a fluid pushes a second fluid
of higher viscosity in a two-dimensional channel.

2 The numerical approach

2.1 Thermodynamics

Before the implementation of two viscosities is explained,
we summarize the fundamentals of the binary-fluid model
used here. For more details, the reader is referred to ref-
erences [6,7].

The binary fluid model is comprised of two ideal gases
A and B with number densities nA and nB respectively
and a repulsive A−B interaction energy. The Helmholtz
bulk free energy density at a temperature T is given by
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where n = nA + nB and ∆n = nA − nB are a convenient
choice of independent variables. $ measures the strength
of the interaction. For kT < 1

2$ the bulk system phase
separates into two phases, with density differences ±∆n0.
k is the Boltzmann constant.

To capture the surface tension, that is the excess free
energy associated with an interface, we use the quasi- or
local thermodynamic assumption that local values of the
different thermodynamic potentials can be defined in an
inhomogeneous system [13]. Assuming further that the to-
tal density is constant across the interface, the Helmholtz
free energy for the inhomogeneous system can be written

Ψ =
∫ [

ψ(n,∆n, T ) +
κ

2
(∇∆n)2

]
d3r (2)

where κ is a constant related to the surface tension. The
chemical potential for the density difference and the stress
tensor follow [14]

µ∆n = µ0
∆n − κ∇2∆n (3)

where

µ0
∆n =

kT

2
ln
(
n+∆n

n−∆n

)
− $

2
∆n

n
(4)

and

σij = pδij + κ∂i∆n∂j∆n (5)

where

p = nkT − κ
[
∆n∇2∆n+

1
2
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]
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The short notation ∂i ≡ ∂
∂xi

and ∂t ≡ ∂
∂t is used in this

article. Note that the system satisfies the ideal gas law
(p0 = nkT ) in the bulk phases away from the interface.
The surface tension at a given point r0 is [14]

σr0 = κ

∫
(∇∆n)2drn (7)

where the integral is performed through the interface
along the interface normal.

2.2 The lattice Boltzmann scheme

The lattice Boltzmann approach is based on two sets of
distribution functions {fα} and {gα}, which evolve accord-
ing to the lattice analog of the BGK-model of kinetic the-
ory [15,16]. At each time step the distribution functions
undergo a collision step followed by a streaming step

fα(r + vα∆t, t+∆t)− fα(r, t) = −∆t
τf

(fα − f (0)
α ), (8)

gα(r + vα∆t, t+∆t)− gα(r, t) = −∆t
τg

(gα − g(0)
α ). (9)

Here, r denote a discrete lattice node, ∆t is the time-step,
α denotes the different lattice directions, and vα denotes
the lattice velocity vectors. The results presented in this
paper are for a 9-velocity model on a square lattice with
{vα} = v{(0, 0), (0,±1), (±1, 0), (±

√
2,±
√

2)} where v ≡
∆x/∆t and ∆x are the lattice velocity and spacing on the
main (short) axes, respectively. τf and τg are relaxation
times. The {fα} determine the total number density and
the macroscopic flow velocity u, while the {gα} give the
number density difference

n ≡
∑
α

fα, nui ≡
∑
α

fαvαi, ∆n ≡
∑
α

gα. (10)

The Latin index i represent the Cartesian i-component
of a vector. Below the usual convention of summing over
repeated Latin indices is assumed.

The thermodynamics is input through the equilibrium
distribution functions {f (0)

α } and {g(0)
α }. These are chosen

to fulfill the following conditions∑
α

f (0)
α = n,

∑
α

f (0)
α vαi = nui, (11)∑
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α vαivαj = Γµ∆nδij +∆nuiuj (14)

where Γ is a constant and σij and µ∆n are given by equa-
tions (5) and (3) respectively. The explicit expressions for
{f (0)
α } and {g(0)

α } are given in reference [17].
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We can derive the differential equations generated by
this discrete scheme by scaling the variables and Taylor
expanding equations (8) and (9). To second order in ∆x
this gives [7,18]

∂tn+ ∂i(nui) = 0, (15)

∂t(nui) + ∂j(nujui) = −∂ip0 + ν∇2(nui)
+ ξ∂i∂j(nuj), (16)

∂t∆n+ ∂i(∆nui) = Γθ∇2µ0
∆n − θ∂i(

∆n

n
∂ip0). (17)

Equation (15) is the continuity equation. Equation (16)
is close to the compressible Navier-Stokes equation with
viscosities

ν =
(2τf −∆t)

6
v2 (18)

and

ξ =
(

2− 3kT
v2

)
ν. (19)

In the incompressible limit (n ≈ const.), equation (16)
reduces to the incompressible Navier-Stokes equation.

Equation (17) is the convection-diffusion equation with

θ = τg −∆t/2. (20)

This form of the convection-diffusion equation, except for
the final term, is standard for isothermal systems, where
the driving force for diffusion is a gradient in the chemical
potential [19] (secs. 58). The final term is believed to be
negligible [20]. For example, looking ahead to Section 3.3
we observed no effect on the capillary wave damping when
reducing θ (keeping Γθ constant).

2.3 Two viscosities

To allow the different phases to have different viscosities
we choose the relaxation time τf to be a function of ∆n/n.
For binary mixtures composed of two chemical compo-
nents several empirical laws have been proposed to relate
the viscosity of the solution ν to the viscosity of the com-
ponents νA and νB [21]. We choose one of the simplest of
these, the so-called “ideal” viscosity of a binary mixture
first proposed by Arrhenius [21,22], which in our variables
reads

ν = ν
n+∆n

2n
A ν

n−∆n
2n

B . (21)

The exponents correspond to the fraction of components
A and B respectively. The relaxation parameter τf used
in the simulations then follows from equation (18).

The viscosity of the binary mixture varies smoothly
with ∆n/n across the interface, whose thickness is itself
determined by the choice of κ. No artificial cut-off values
are necessary [10]. We shall use ν1 and ν2 to denote the
viscosity in bulk phases 1 and 2, respectively.
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Fig. 1. Profiles for the total density n (full line) and the den-
sity difference ∆n (broken line) across an interface. Parameters
kT = 0.5, $ = 1.1, and κ = 0.04 are used.

3 Results and discussion

The chemical potential (3) is zero across an equilibrated
interface. This determines the solution for ∆n across the
interface, and the surface tension (7) can be calculated.
Wagner [17] obtained a good match when comparing
the theoretical surface tension with that calculated from
Laplace’s law for the pressure difference between the in-
side and the outside of a drop, simulated by this method.
However, for small κ values (thin interfaces), the surface
tension found using simulations is somewhat less than that
calculated from the theory because of discreteness errors.

In the following we assume ∆t = ∆x = 1. For kT =
0.5, n = 2 and $ = 1.1 we find a theoretical surface ten-
sion σ = 0.2217

√
κ [17]. Increasing κ increases the surface

tension, and also the thickness of the equilibrium interface.
Figure 1 shows the variation of n and ∆n over an equi-
librated interface. Let ∆n0 denote the absolute value of
the density difference in the bulk phases. Using κ = 0.04,
the interface thickness is 4-5 lattice spacings. Thus the
method is ideal for simulating two-phase problems on a
mesoscopic scale, where a finite interface-thickness is rel-
evant. For κ = 0 a sharp interface of one lattice spacing
is obtained, but this corresponds to zero surface tension
and the equilibrated surface will not be stable to small
perturbations.

We now test the model by considering simple flows for
which exact results are available. Note however that the
analytic results are for two-phase flow with a sharp, not
an extended interface. Therefore we do not expect exact
agreement in the interface region. All simulations were
run with kT = 0.5, n = 2, $ = 1.1, Γ = 0.80, τg = 1 and
κ = 0.04 unless other parameter values are specified.

3.1 Shear flow

Consider a two-dimensional fluid flowing in the x-direction
with shear imposed in the y-direction. Initially, bulk
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Fig. 2. Velocity in the x-direction ux as a function of y/L for
shear flow. For 0 ≤ y/L ≤ 0.5 the density difference is +∆n0,
for 0.5 ≤ y/L ≤ 1.0 it is −∆n0. Simulation results (points) and
analytical prediction for a sharp interface (lines) are compared
for different viscosity ratios M .

phase 1, with density difference +∆n0, is placed in the
space between y = −L/2 and y = L/2 and bulk phase
2, with density difference −∆n0 between y = −L and
y = −L/2 and between y = L/2 and y = L. At each time
step we impose a constant velocity at y = ±L.

u(y) =
{

(u0, 0) y = L,
(−u0, 0) y = −L. (22)

To simulate this problem we use a system periodic in both
directions. The boundary condition equation (22) is im-
posed by an instantaneous relaxation (τf = 1) to the
proper equilibrium distribution functions at y = ±L. We
take u0 = 0.0945v. To avoid spurious boundary effects,
we also use τf = 1 in bulk phase 2. The required viscosity
ratio is obtained by adjusting the relaxation parameter in
phase 1.

Figure 2 shows the variation of the x-component of
the velocity ux for 0 ≤ y ≤ L and different values of the
viscosity ratio M = ν2/ν1. The results are compared to
the analytic solution for Newtonian fluids

ux(y) =

{
2u0y[L(1 + 1

M )]−1, 0 ≤ y ≤ L/2,
u0[(2y − L) +ML][L(M + 1)]−1, L/2 ≤ y ≤ L.

(23)

Agreement is excellent. The increasing deviations as M
increases/decreases are a consequence of the finite inter-
face width and the choice (21) which allows the viscosity
to vary smoothly through the extended interface. Runs
with smaller κ, which correspond to a narrower interface,
do indeed give results that approach the analytic solu-
tion, see Figure 3. The interface is also stable for κ = 0
because the lattice Boltzmann algorithm contains no in-
trinsic noise. For longer runs the noise due to round-off
errors may destabilise the κ = 0 interface.

Figure 2 does, however, reveal a small unphysical effect
in the model. For M = 1 the velocity profile varies slightly
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Fig. 3. Velocity in the x-direction ux as a function of y/L for
shear flow. The viscosity ratio (M) equals 10. Simulated results
(points) at different κ-values are compared to the analytical
prediction for a sharp interface (line).

from linear in the region of the interface (∼ 1%). This is
due to the small change in the total density n across the
interface (∼ 1.7% for the parameters used here). The 9-
velocity lattice Boltzmann model becomes non-Galilean-
invariant for compressible flow: more velocities would be
needed to correct for this.

3.2 Poiseuille flow

We next consider Poiseuille flow in the x-direction. We
used the same starting configuration for the fluid as for
shear flow. Non-slip walls at y = ±L are imposed by us-
ing “bounce back” boundary conditions with the walls
placed half way between the nodes. This scheme is of
second-order accuracy in the lattice spacing for simple
flows [23]. Periodic boundary conditions are imposed in
the x-direction and a body force drives the flow.

The analytical solution for a sharp interface is

ux(y) =

{ 1
2G[(L2/4− y2)/ν1 + 3

4L
2/ν2], 0 ≤ y ≤ L/2,

1
2G(L2 − y2)/ν2, L/2 ≤ y ≤ L,

(24)

where G is the imposed force [24].
This solution is compared to our numerical results in

Figure 4. Again there is close agreement for most cases.
However there is a pronounced discrepancy in the high
viscosity phase for M = 10, the largest value considered.
This is a physical result arising from the finite interface
width: the numerical results approach the analytic ones as
expected as the width of the interface decreases [25].

3.3 Capillary waves

As a dynamic test of the model capillary waves were inves-
tigated. The system consisted of walls at y = 0 and y = H
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Fig. 4. Velocity in the x-direction ux (relative to the theo-
retical maximum velocity for M = 1) as a function of y/L
for Poiseuille flow. For 0 ≤ y/L ≤ 0.5 the density difference
is +∆n0, for 0.5 ≤ y/L ≤ 1.0 it is −∆n0. Simulation results
(points) and analytical prediction for a sharp interface (lines)
are compared for different viscosity ratios M .

while it was periodic in the x-direction. The wave was ini-
tialized as a sinusoidal curve around y = H/2 of one wave-
length L and amplitude a separating the two bulk phases.
The system was then allowed to relax to equilibrium un-
der the influence of capillary and viscous forces only (no
gravity). The result was a damped standing wave. At each
timestep, at a certain x-value, the height of the interface
was measured. This curve was used to find the oscillation
frequency as well as the damping of the wave. To not com-
plicate the problem further, the same viscosity was used
in the two phases (M = 1).

The classical analytical treatment of such a wave is
based on potential flow theory and ideal fluids, see e.g.
reference [19]. Jeng et al. [26] recently extended the anal-
ysis to a wave between two viscous fluids. Both deriva-
tions assume a small amplitude a, a/L� 1 such that the
non-linear term in the Navier-Stokes equation can be ne-
glected. Also, Jeng et al.’s results hold only for large liquid
depths.

Jeng et al.’s solution is complicated but converges to
that of potential flow theory,

ω =

√
σk3

2n
, γ = 2νk2 (25)

when the viscosities go to zero. Here, ω is the angular
frequency, k the wavenumber and γ the damping coeffi-
cient of the capillary waves. Both the Jeng et al. result
and the potential flow result are compared to the lattice
Boltzmann results below.

Parameters a/H = 0.02 and H = 256 were found to be
appropriate for this study. A viscosity parameter τf = 0.7
was used in the simulations. Both a high (κ = 0.15, in-
terface width ∼ 10) and a low (κ = 0.04, interface width
∼ 4−5) surface tension were used. Wavelengths L = 256,
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Fig. 5. The y-position of the capillary wave interface as a
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peak points (line).
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Fig. 6. The dispersion relation (angular frequency ω vs. wave
number k). Simulations using κ = 0.15 and κ = 0.04 are com-
pared with the corresponding analytical solutions from poten-
tial theory and from Jeng et al. [26].

128, 64 and 32 all gave a damped wave motion with uni-
form periods and peaks which fit perfectly to an exponen-
tial curve determining the damping coefficient. Figure 5
shows the damped wave motion and the fit to an expo-
nential curve eC−γt for κ = 0.15 and L = 256.

The mean of typically the 8 first periods was used to
calculate the angular frequency. In Figure 6 the frequen-
cies obtained are plotted against k = 2π/L. For compari-
son the analytical dispersion relations are also given. The
surface tension used in the analytical formulae, is the one
found from Laplace law corresponding to the κ value. For
κ = 0.15 a good quantitative match to the solution of
Jeng et al. is obtained at low wave numbers. At high val-
ues of k (short wavelength L) the assumption a/L � 1
holds less well and non-linear effects becomes more im-
portant. Therefore it is reasonable to expect discrepancies
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Fig. 7. The damping coefficient γ as a function of the wave
number k. Simulations using κ = 0.15 and κ = 0.04 are com-
pared with the corresponding analytical solutions from poten-
tial theory and from Jeng et al. [26].

with the numerical results which do take account of the
non-linearities in the Navier-Stokes equations. This is the
same effect as detected by others [4]. For our choice of H
we find a better match to Jeng et al.’s solution at L = 128
(3.0%) as compared to L = 256 (3.3%). This is likely to
be because the theory also assumes H/L � 1. Doubling
H to 512 at L = 128 (keeping the same absolute size of
the amplitude) reduced the discrepancy to 2.9%.

Using κ = 0.04, the fit to Jeng et al.’s result is
again best at low wave numbers, but the discrepancy is
somewhat larger as compared to the κ = 0.15 simulations.
E.g., the relative discrepancy to Jeng et al.’s result is now
6.2% and 9.8% at L = 256 and L = 128, respectively. It is
reasonable that a larger discrepancy is obtained with the
thinner interface because the basic assumption of smooth
gradients [13] underlying equation 2 itself becomes less
correct.

For each wave an excellent match was obtained when
fitting the peak data-points to an exponential curve eC−γt.
(The initial peak point was not used in the fitting proce-
dure.) Figure 7 shows the damping coefficient γ obtained
for various k. Again our results compare much better to
the solution of Jeng et al. than to that predicted by pure
potential flow theory. The damping found using simula-
tions is however less than both the theoretical ones. The
damping shows a larger difference to Jeng et al.’s result
as compared to the dispersion relation. The relative dis-
crepancy to Jeng et al.’s result increase with decreasing
k. This trend was found not to be sensitive to the size of
H/L nor the Γ parameter (which was used to minimize
the effect of the second term in Eq. (17)). We believe this
behaviour is caused by the lack of Galilean invariance in
the interface region, as discussed in Section 3.1.
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Fig. 8. Finger evolution for M = 10 and ū = 0.01. a) κ = 0.04,
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3.4 Fingering in two dimensions

We now use the two-viscosity lattice Boltzmann method
to investigate fingering. One phase pushes the second, M
times more viscous, along a two-dimensional channel with
non-slip walls at y = 0 and y = W . The driving fluid
forms a growing finger if M and the capillary number Ca
defined by

Ca ≡ utnν2

σ
(26)

are large enough. In this definition ut is the velocity at
the tip of the finger and ν2 is the kinematic viscosity of
the displaced fluid.

The non-slip condition is imposed as in Section 3.2.
Initially, only bulk phase 2 is present in the channel. The
injection of phase 1 is implemented as simply as possible.
At each time step, following the streaming and collision
operations, the first x-column is set to contain bulk phase
1 and the last x-column to contain bulk phase 2, both with
a wanted mean velocity ū. To avoid unnecessary bound-
ary effects, a Poiseuille profile (along y) for the in/out ve-
locities is used. The scheme produces a build-up of the
pressure close to inlet and a build-down of the pres-
sure close to outlet. This pressure gradient drives the
flow. (Using this method, the actual mean velocity in
the channel is somewhat lower than ū.) The time needed
to establish a stable finger varied for the different capillary
numbers used. Grid-sizes of (512 × 32), (1026× 32), and
(512× 64) were appropriate.

Figure 8 shows the evolution of fingers having M = 10
and ū = 0.01v. The fingers are represented by the contour
line ∆n = 0 and are plotted at equal time intervals. As
time evolves the fingers move upwards in the figure. The
viscosity ratio M = 10 is obtained by choosing τf = 0.6
and 1.5 in bulk phases 1 and 2 respectively. With such
values of τf and W = 32∆x one-phase Poiseuille flow is
reproduced to 0.3% [23]. Hence we expect no error associ-
ated with the non-slip boundaries. In Figure 8a κ = 0.04.
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For this high value of the surface tension no finger is ob-
served in a (512×32) or a (1024×32) system. In Figure 8b
κ = 0.01, which produces a stable finger. The interface is
quite sharp and the step-like behaviour of the finger pro-
files is a consequence of the finite lattice resolution and
will smooth out with an increased lattice size. Figure 8c
has κ = 0 and there is no longer any energy associated
with the interface. One might expect the interface to be
unstable and there are some signs that smaller side-fingers
are being formed by the end of the simulation. Lattice
Boltzmann simulations include no intrinsic noise and the
small perturbations caused by the round off errors (of or-
der 10−16) do not have enough time to grow.

Figures 9a, b, and c show results for the same three
values of κ but for a larger driving velocity ū = 0.1v. For
κ = 0.04 (a) a smooth stable finger is formed. For lower κ
(b,c) instabilities again occur but now only at the back of
the finger. Figures 8b and 9a have an indented part near
the beginning of the fingers.

Table 1. Summary of the data obtained from the finger sim-
ulations.

M ū(v) κ ut(v) Ca uerr
t (%) λ

10 0.01 0.04 0.0048 0.079 6.9 1.00 ± 0.03

10 0.01 0.01 0.0094 0.39 10 0.75 ± 0.03

10 0.01 0 0.015 ∞ 0.9 0.466 ± 0.016

10 0.1 0.04 0.098 1.6 9.9 0.64 ± 0.03

10 0.1 0.01 0.11 4.6 11 0.56 ± 0.03

10 0.1 0 0.14 ∞ 5.1 0.529 ± 0.016

100 0.01 0 0.0082 ∞ 11 0.501 ± 0.016

100 0.1 0 0.11 ∞ 21 0.531 ± 0.016
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Fig. 11. Finger-width as a function of capillary number Ca.
The results of Halpern and Gaver [2] are shown for comparison.

Figure 10 shows results for a larger viscosity difference
M = 100 and κ = 0 for two different values of ū. M =
100 is achieved by increasing τf to 10.5 in bulk phase
2. The bounce-back conditions at the wall are not ideal
for such high relaxation times in general, giving a slip-
condition [27]. For these two cases however, bulk phase
2 behind the tip of the finger does not flow at all and
thus the boundary conditions should not introduce any
significant errors. The finger shape is virtually unaffected
by the higher viscosity ratio (compare Fig. 10a with 8c
and 10b with 9c).

The results of the simulations for different values of
the viscosity ratio M , the tip velocity ut, and the surface
tension κ are summarised in Table 1. Here, λ is the width
of the finger relative to W , the width of the cell. Capillary
numbers are based on the measured tip-velocities (ut) of
the fingers, read directly from the figures, and the surface
tension found from Laplace law. Table 1 gives the mea-
sured data with uncertainty-estimates. The uncertainty
in ut, and thereby Ca, is based on the relative change be-
tween the two last measurements of ut. The uncertainty
in λ is given as one lattice spacing. The results in the ta-
ble are presented graphically in Figure 11 where they are
compared to those obtained by other authors.
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We now summarise previous work on two-dimensional
fingering and list possible reasons for the discrepancies
found. Reinelt and Saffman [1] presented a finite differ-
ence solution of the Stokes problem in two dimensions.
The highest capillary number they consider was 2, with a
corresponding λ ≈ 0.62. Halpern and Gaver [2] extended
the study looking at the translation of a two-dimensional
bubble in a channel. Their boundary element solution
matched the result of Reinelt and Saffman but extended
the solution to higher Ca. Their result are shown as the
line in Figure 11. In particular λ∞ was predicted to 0.583.
Here the ∞ subscript means at the limit of high Ca.

Except for a small discrepancy for the smallest Ca re-
ported, Figure 11 shows that we reproduce the results of
Reinelt and Saffman (Ca < 2). For Ca > 2 we find a
smaller λ than Halpern and Gaver. In particular we find
a lower value for λ∞.

There are several possible reasons for the discrepan-
cies. It may be that the fingers in our simulations have
not attained their steady state although all the checks we
performed suggested that this was not the case. Discrep-
ancies with Halpern and Gaver’s result may also occur be-
cause they use an idealized fluid description which neglects
among other things the non-linear term in the Navier-
Stokes equation. On the other hand, correction terms in
the lattice Boltzmann approximation to the Navier-Stokes
equations may affect our numerical results. Such correc-
tions terms are probably the reason for the small depen-
dence of λ∞ on ū that we observe (see Fig. 11). Another
explanation, discussed in Section 3.3, is that the basic as-
sumption of smooth gradients [13] underlying equation (2)
itself becomes less correct as we decrease the interface
thickness.

Moreover the previous results are for M =∞ whereas
our simulations are for finite M . As we increase M from
10 to 100 only the low-velocity finger is affected (λ∞ is
changed from 0.47 to 0.50). Rakotomalala et al. [11,12]
studied fingering of miscible fluids in a 2D channel. At
high Péclet numbers (ratio of viscous to diffusive forces)
their result should be similar to our immiscible problem.
In this limit and large M they found λ ≈ 0.56. Their
simulated fingers were almost identical for M = 100 and
M = 1000.

4 Summary

A thermodynamically consistent model for the simulation
of a binary fluid has been extended to handle different
viscosities. The model is ideal for simulating two-phase
flow on a mesoscopic scale, where the interface between
the phases has a finite thickness. It is also possible to ob-
tain results in the limit of zero interface thickness. Hence
we expect the approach to be useful in problems such as
the simulation of multiphase flow in the pore-space of a
porous medium, spinodal decomposition in fluids with a
dynamic asymmetry, or simulation of more complex fluids

such as microemulsions where the differing viscosity of the
phases may have a significant effect on the rheology.

The method was used to study shear and Poiseuille
flow in layered fluids. We obtained good agreement with
the analytic solutions given that the latter are for inter-
faces of zero width.

As a further check of the model the evolution of a
capillary wave were investigated. The dispersion relation
compared very well to analytical predictions in refer-
ence [26]. Agreement becomes less good for large k where
the simulations are able to account for non-linear effects.
Good agreement persisted even for interfaces as narrow as
∼ 4−5 lattice spacings. The amplitude of the simulated
wave relaxed as a perfect exponential and the damping
coefficient found compared qualitatively well to the an-
alytical predictions in reference [26] but was somewhat
smaller.

Finally, the model was applied to simulate the displace-
ment of a fluid by a less viscous fluid in a two-dimensional
channel. The simulated finger width agreed quantitatively
with previous numerical work at capillary numbers below
2. For Ca > 2 however, our method predicts a smaller
finger width than found in the one previous study. A lim-
iting finger width close to 1/2 is obtained for high capillary
numbers and high viscosity ratios.

We would like to thank P. Papatzacos, A. Wagner and S.
Ekrann for helpful discussions. This work has received sup-
port from the Research Council of Norway (PROPETRO and
the Programme for Supercomputing) through a Ph.D.-grant
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